UMTA-MA-06-0126-82-3 DOT-TSC-UMTA-82-48

Supplement IV Cost Experience of Automated Guideway Transit Systems

William I. Thompson III

Transportation Systems Center Cambridge MA 02142

December 1982 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.

U.S. Department of Transportation

Urban Mass Transportation Administration

Office of Technical Assistance Office of Methods and Support Washington DC 20590

> REPRODUCED BY: U.S. Department of Commerce National Technical Information Service Springfield, Virginia 22151

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

4. This and Submits 1. Resear Does Supplement IV Cost Experience of Automated 1. Resear Does Guideway Transit Systems. December 1982 7. Author? W.I. Thompson, III 9. Performing Organization Names and Addres DOT-TSC-UNTA-82-48 9. Performing Organization Names and Addres DOT-TSC-UNTA-82-48 9. Performing Organization Names and Addres DOT-TSC-UNTA-82-48 10. Supplement Names and Addres DOT-TSC-UNTA-82-48 11. Supressing Agency Hear and Address DOT-TSC-UNTA-82-48 12. Spectration Systems Center Transportation Systems Center 13. Supressing Agency Hear and Address DOI-TSC-UNTA-82-48 13. Supressing Agency Hear and Address DOI-TSC-UNTA-82-48 13. Supressing Agency Hear and Period Covered Final Report 14. Super Stream Address U.S. Department of Transportation 15. Supressing Network Network The NIIS Order numbers for the other cost reports of the same title are respectively: Supplement I, PB 80-146483; Supplement II, PB 80-204878, and Supplement II, PB 80-245656. 13. Autorated Cuideway Transit (ACT) is an innovative form of public transportation an in which automatically controlled vehicles are operated of freed guideways along an exclusive right-of-way. By the end of 1982, domestic AGT systems will have corried over 500 million passengers sure ther first commercial operation at the transp	1. Report No. UMTA-MA-06-0126-82-3	2. Government Accession No.	3. Recipient's Carolog	No. 162792	
7. Author'd W.I. Thompson, III DDT-TSC-UMTA-82-48 9. Performing Orgenization Name and Address U.S. Department of Transportation Transportation Systems Center Cambridge, Massachusetts 02142 10. Wen Unit No. (TRAIS) MA-06-0126 12. Spenseing Agency News and Address U.S. Department of Transportation Mass Transportation Administration 400 Seventh Street, S.W. Washington, D. C. 20590 11. Type of Report and Parced Covered Final Report Oct. 1981-Sept. 1982 13. Supelement III, PB 80-244683; and Supplement III, PB 81-245656. 14. Spensoring Agency Cele URT-42 14. Advance Cuideway Transit (ACT) is an innovative form of public transportation in which automatically controlled vehicles are operated on fixed guideways along an exclusive right-of-way. By the end of 1982, domestic AGT systems will have carried over 500 million passengers since their first commercial operation at the Tampa International Airport in 1971. To kee pareast of the domestic use of AGT systems in the United States, UMTA has sponsored a series of reports on the cost experience of selected AGT systems currently operating in the United States. Evaluation of translower time and comparisons with other transportation modes are also presented. This report provides cost information about 15 domestic AGT systems. Capital costs, in 1981 dollars, for 13 systems are provided. OM data for calendar year 1981 is provided for all 15 systems are provided. OM data for calendar year 1981 is provided for all 15 systems are provided. Carenes, Willamsburg; Dallas-Fort Worth Airport (AIRTRANS); Duke University Medical Center; Farlane Shopping Center; Nartsfield Atlanta International Airport; New Tarlane Shopping Center; Nartsfield Atlanta International Airport; Wealt Disney World, and Morgantown Masst Virp	4. Title and Subtitle Supplement IV Cost Exper Guideway Transit Systems	5. Report Date December 198 6. Performing Organiza DTS-67 8. Performing Organiza	2 tion Code		
9. Perturning Orgenization Name of Address 10 Not Unit Net (TRAIS) 9. Perturning Orgenization Systems Center 11. Generater or Orgen Not. 12. Spennering Agency News of Address 11. Generater or Orgen Not. 12. Spennering Agency News of Address 02142 13. Type of Reserved Address 11. Generater or Orgen Not. 14. Spennering Agency News of Address 02142 15. Supplement of Transportation 11. Generater or Orgen Not. 16. Way Unit News 19. Spennering Agency News of Address 17. Spennering Agency News of Address 02142 18. Spennering Agency News of Address 02142 19. Supplement Street, S.W. 11. Generater of Orgen News 19. Supplement II, PB 81-245656. 12. Spennering Agency Code 10. Aburedi Automated Guideway Transit (ACT) is an innovative form of public transportation at the Tampa International Airport in 1971. To keep abreast of the domestic use of AGT systems in the United States, UMTA has sponsored a series of reports on the cost experience of selected domestic AGT systems. Capital costs, operations and maintenance (OAM) costs, and system characteristics of selected AGT systems currently operation about numbers of passengers, system availability and system characteristics is also provided. 19. The set or origin of Admess the Address of the States. 19. Set orest Code St tod Systems Additional information abou	7. Auther's) W.I. Thompson, I	II	DOT-TSC-UMTA	-82-48	
 Final Agent, Name and Agent in the series of the seris of the series of the series of the series of the series of t	9. Performing Organization Name and Addres U.S. Department Research & Speci Transportation S Cambridge, Massa	of Transportation al Programs Administration ystems Center chusetts 02142	 Work Unit No. (TRA <u>MA-06-0126</u> Contract or Grant N Type of Report and The of Report and 	o, Period Covered	
 ¹⁵ Suprementary Netts: The NTIS order numbers for the other cost reports of the same title are respectively: Supplement I, PB 80-146483; Supplement II, PB 80-204878, and Supplement III, PB 81-245656. ¹⁶ Astroct: Automated Guideway Transit (AGT) is an innovative form of public transportation in which automatically controlled vehicles are operated on fixed guideways along an exclusive right-of-way. By the end of 1982, domestic AGT systems will have carried over 500 million passengers since their first commercial operation at the Tampa International Airport in 1971. To keep abreast of the domestic use of AGT systems in the United States, UMTA has sponsored a series of reports on the cost experience of selected domestic AGT systems. Presented in these documents are the capital costs, operations and maintenance (0&M) costs, and system characteristics of selected AGT systems currently operating in the United States. Evaluation of trends over time and comparisons with other transportation modes are also presented. This report provides cost information about 15 domestic AGT systems. Capital costs, in 1981 dollars, for 13 systems are provided. O&M data for calendar year 1981 is provided for all 15 systems. Additional information about numbers cf passengers, system availability and system characteristics is also provided. The 15 AGT systems examined in this report are: Busch Gardens, Williamsburg; Dallas-Fort Worth Airport (AIRTANS); Duke University Medical Center; Fairlane Shopping Center; Hartsfield Atlanta International Airport; Wait Disney World; and Morgantown West Virginia University System. Y. Kwy Weid. AGT Domestic Costs Study Consult of thereset of Stement Available to the Public through the National Technical Information Service, Springfield, Virginia 22161. Y. Seven's Cost. Ide interset of Stement Attional Technical Information Service, Springfield, Virginia 22161. Y. Seven's Cost. (of the reset) 20. Seven's Cost. (of the reset)	U.S. Department of Transp Urban Mass Transportation 400 Seventh Street, S.W. Washington, D. C. 20590	oortation Administration	14. Sponsoring Agency URT-42	pt. 1982 Code	
16. Absvect Automated Guideway Transit (AGT) is an innovative form of public transportation in which automatically controlled vehicles are operated on fixed guideways along an exclusive right-of-way. By the end of 1982, domestic AGT systems will have carried over 500 million passengers since their first commercial operation at the Tampa International Airport in 1971. To keep abreast of the domestic use of AGT systems in the United States, UMTA has sponsored a series of reports on the cost experience of selected domestic AGT systems. Presented in these documents are the capital costs, operations and maintenance (0&M) costs, and system characteristics of selected AGT systems currently operating in the United States. Evaluation of trends over time and comparisons with other transportation modes are also presented. This report provides cost information about 15 domestic AGT systems. Capital costs, in 1981 dollars, for 13 systems are provided. O&M data for calendar year 1981 is provided for all 15 systems. Additional information about numbers cf passengers, system availability and system characteristics is also provided. The 15 AGT systems examined in this report are: Busch Gardens, Williamsburg; Dallas-Fort Worth Airport (AIRTRANS); Duke University Medical Center; Fairlane Shopping Center; Hartsfield Atlanta International Airport; Houston Intercontinen- tal Airport; King's Dominion Amusement Park; Miami International Airport; Walt Disney World: and Morgantow West Virginia University System. 17. Key Word Cost Study Capital Costs Cost Study 18. Distribution Stimment Available to the Public through the National Technical Information Service, Springfield, Virginia 22161. 19. Security Cleasified 21. No. of Paget 22. Price	15 Supplementery Notes The NTIS title are respectively: and Supplement III, PB 8	order numbers for the other Supplement I, PB 80-146483; 1-245656.	cost reports of Supplement II,	the same PB 80-204878,	
This report provides cost information about 15 domestic AGT systems. Capital costs, in 1981 dollars, for 13 systems are provided. O&M data for calendar year 1981 is provided for all 15 systems. Additional information about numbers cf passengers, system availability and system characteristics is also provided. The 15 AGT systems examined in this report are: Busch Gardens, Williamsburg; Dallas-Fort Worth Airport (AIRTRANS); Duke University Medical Center; Fairlane Shopping Center; Hartsfield Atlanta International Airport; Houston Intercontinen- tal Airport; King's Dominion Amusement Park; Miami International Airport; Minnesota Zoological Gardens; Orlando International Airport; Pearlridge Center; Seattle-Tacoma International Airport; Tampa International Airport; Walt Disney World: and Morgantown West Virginia University System.18. Disribution Statement Available to the Public through the National Technical Information Service, Springfield, Virginia 22161.17. Key Words Cost Study Operations & Maintenance Costs Cost Study Capital Costs Statistics Guideway Domestic - Passenger Statistics AGT Deployment18. Disribution Statement Available to the Public through the National Technical Information Service, Springfield, Virginia 22161.19. Security Clossif. (of this report) Unclassified20. Security Clessif. (of this page)21. No. of Pages 22. Price	16 Abstroct Automated Guideway Transf in which automatically co an exclusive right-of-way carried over 500 million the Tampa International A AGT systems in the United cost experience of select are the capital costs, or characteristics of select Evaluation of trends over are also presented.	6. Abstroct Automated Guideway Transit (AGT) is an innovative form of public transportation in which automatically controlled vehicles are operated on fixed guideways along an exclusive right-of-way. By the end of 1982, domestic AGT systems will have carried over 500 million passengers since their first commercial operation at the Tampa International Airport in 1971. To keep abreast of the domestic use of AGT systems in the United States, UMTA has sponsored a series of reports on the cost experience of selected domestic AGT systems. Presented in these documents are the capital costs, operations and maintenance (O&M) costs, and system characteristics of selected AGT systems currently operating in the United States. Evaluation of trends over time and comparisons with other transportation modes			
19. Security Clossif. (of this report)20. Security Classif. (of this page)21. No. of Pages22. PriceUnclassified74	This report provides cost information about 15 domestic AGT systems. Capital costs, in 1981 dollars, for 13 systems are provided. O&M data for calendar year 1981 is provided for all 15 systems. Additional information about numbers of passengers, system availability and system characteristics is also provided. The 15 AGT systems examined in this report are: Busch Gardens, Williamsburg; Dallas-Fort Worth Airport (AIRTRANS); Duke University Medical Center; Fairlane Shopping Center; Hartsfield Atlanta International Airport; Houston Intercontinen- tal Airport; King's Dominion Amusement Park; Miami International Airport; Minnesota Zoological Gardens; Orlando International Airport; Pearlridge Center; Seattle-Tacoma International Airport; Tampa International Airport; Walt Disney World: and Morgantown West Virginia University System. NACT Systems Cost Study Operations & Maintenance Costs Cost Study Capital Costs Statistics Guideway Domestic - Passenger Statistics AGT Deployment				
	19. Security Clossif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 74	22. Price	

Form DOT F 1700.7 (8-72)

PREFACE

This report summarizes the capital and operations and maintenance cost experience and trends of various Automated Guideway Transit (AGT) systems.

This study was sponsored by the U.S. Department of Transportation, Urban Mass Transportation Administration (UMTA) through the Analysis Division of the Office of Methods and Support under the Office of Technical Assistance.

This report has been compiled using data provided as a public service by several institutions. We would like to acknowledge the following personnel at these institutions who contributed to this data collection effort.

Busch Gardens

D. Potter, Operations Manager

Dallas-Fort Worth Airport

Duke University Medical Center

Ford Motor Company

Greater Orlando Aviation Authority Greiner/Engineering Sciences, Inc. S. Gardner, Project Engineer Hartsfield International Airport

A.E. Blalock, Maintenance Engineer

D. Leftwich, Director of Transportation

L.A. Bergen, Medical Planning Architect

M. Gulkewicz, Finance Staff Analyst, Diversified Products Analysis R. Reed, Supervisor, ACT System

G. Seel, Director of Facilities

M.W. Walker, Director of Planning

Hillsborough County Aviation Authority

King's Dominion Amusement Park

Morgantown People Mover System

Minnesota Zoological Garden

Otis Elevator Company Transportation Technology Div.

P.M. Hawaii, Inc.

Seattle-Tacoma International Airport

Universal Mobility, Inc.

WED Transportation Systems, Inc.

Westinghouse Electric Corp.E.A. Gordon, Manager of People MoverTransportation DivisionSales & Applications

The author would like to acknowledge the support provided by R. Adams, Chief, Analysis Division at the Urban Mass Transportation Administration, F.J. Rutyna, Chief, Maintenance and Productivity Division, and N. Patt, Project Engineer, at the Transportation Systems Center. I would also like to acknowledge R. E. Zdancewicz of DYNATREND, INC. for providing the regression analysis and his further assistance in preparing the final report.

G.J. Bean, Director of Aviation W. Connors, Director of Planning & Development

P.T. MacAlester, Director of Information

L. Hooper, General Manager A. Ryland, Rides Manager

R. Bates, Director

S.A. Iserman, Director, Business Division

L. Saunders, General Manager

R. Weidenbeck, General Manager J. Sinkinson, Project Manager

R. Donlon, Manager, Business Development

W.E. Bricker, President

H. Pater, President

M.K. Bitts, Electronics Superintendent

TABLE OF CONTENTS

Section				Page
1.0	EXEC	UTIVE S	UMMARY	1-1
	1.1	Backgr	ound	1-1
	1.2	Passen	ger Statistics	1-1
	1.3	Operat	ions and Maintenance Statistics	1-4
	1.4	Discus	sion	1-7
2.0	INTR	ODUCTIO	Ν	2-1
3.0	OVER	VIEW OF	AGT SYSTEMS	3-1
	3.1	Existi	ng Systems	3-1
•	3.2	Applic	ability of Existing AGT Cost and Service	
		Infor	mation to Alternative Settings	3-4
4.0	CAPI	TAL COS	TS	4-1
	4.1	Introd	uction	4-1
	4.2	Cost A	djustments	4-2
	4.3	Capita	1 Cost Exhibits	4-3
	4.4	Discus	sion of Capital Cost Variations	4-6
		4.4.1	Guideway	4-9
		4.4.2	Stations	4-10
		4.4.3	Maintenance and Support	4-11
		4.4.4	Power and Utilities	4-11
		4.4.5	Vehicles	4-12
		4.4.6	Command and Control	4-12
		4.4.7	Engineering and Project Management	4-13

۷

TABLE OF CONTENTS (Concluded)

Section

.

5.0	OPERATIONS AND MAINTENANCE COSTS	5-1
	5.1 Introduction	5-1
	5.2 O&M Cost Exhibits	5-2
	5.3 Discussion of O&M Cost Variations	5-11
	5.3.1 Cost Analysis	5-11
	5.3.2 Operational Analysis	5-24
	5.3.3 Trend Analysis	5-25
	5.3.4 AGT and Conventional Transit D&M	
	Cost Comparison	5-25
	APPENDIX A - CHARACTERISTICS OF FIFTEEN DOMESTIC	
	AGT SYSTEMS	A-1
	APPENDIX B - LOCATIONS AND CONTACTS FOR SELECTED DOMESTIC	

AGT SYSTEMS B	}-	1
---------------	----	---

,

LIST OF ILLUSTRATIONS

Figure		Page
1-1	PASSENGERS CARRIED ON SEVEN AGT SYSTEMS LOCATED IN AN AIRPORT ENVIRONMENT	1-3
1-2	PASSENGERS CARRIED ON EIGHT AGT SYSTEMS LOCATED IN A NON-AIRPORT ENVIRONMENT	1-3
3-1	DOMESTIC AGT DEPLOYMENTS	3-2
4-1	AVERAGE DISTRIBUTION OF CAPITAL COSTS FOR THIRTEEN AGT	4-5
4-2	REGRESSION OF GUIDEWAY COST ON EQUIVALENT ELEVATED LANE MILES	4-7
4-3	REGRESSION OF UNIT VEHICLE COST ON EQUIVALENT PASSENGER PLACES	4-8
5-1	AVERAGE DISTRIBUTION OF O&M COSTS FOR FIFTEEN AGT SYSTEMS	5-6
5-2	REGRESSION OF O&M COST ON VEHICLE MILES TRAVELED	5-7
5-3	REGRESSION OF O&M COST ON EQUIVALENT PLACE MILES	5-8
5-4	REGRESSION OF O&M COST ON PASSENGERS CARRIED	5-9
5-5	REGRESSION OF O&M COST ON SYSTEM OPERATING HOURS	5-10

vii

LIST OF ILLUSTRATIONS (Continued)

Figure	·	Page
5-6	TREND OF O&M COSTS FOR FIVE AGT SYSTEMS	5-12
5-7	TREND OF VEHICLE MILES TRAVELED FOR FIVE AGT SYSTEMS	5-13
5-8	TREND OF EQUIVALENT PLACE MILES FOR FIVE AGT SYSTEMS	5-14
5-9	TREND OF PASSENGERS CARRIED FOR FIVE AGT SYSTEMS	5-15
5-10	TREND OF O&M COST PER VEHICLE MILE TRAVELED FOR FIVE AGT SYSTEMS	5-16
5-11	TREND OF O&M COST PER EQUIVALENT PLACE MILE FOR FIVE AGT SYSTEMS	5-17
5-12	TREND OF O&M COST PER PASSENGER CARRIED FOR FIVE AGT SYSTEMS	5-18
5-13	TREND OF O&M COSTS PER VEHICLE MILE TRAVELED FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT	5-19
5-14	TREND OF O&M COSTS PER EQUIVALENT PLACE MILE FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT	5-20
5-15	TREND OF O&M COSTS PER PASSENGER CARRIED FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT	5-21
5-16	COMPARISON OF 0&M COST PER VEHICLE MILE TRAVELED FOR FIVE DIFFERENT TRANSIT MODES	5-22

LIST OF TABLES

Table		Page
1-1	LIST OF DOMESTIC GRT SYSTEMS CONSIDERED IN THIS REPORT	1-2
1-2	COMPARISON OF PASSENGER TRAFFIC ON NINE DOMESTIC AGT SYSTEMS FOR 1980 AND 1981	1-5
1-3	SUMMARY OF O&M COST PER PASSENGER CARRIED FOR FIFTEEN DOMESTIC AGT SYSTEMS DURING 1981	1-6
1-4	SUMMARY OF O&M COST FOR SEVEN DOMESTIC AGT SYSTEMS FOR 1980 AND 1981	1-8
3-1	SYSTEM CHARACTERISTICS	3-3
4-1	AGT CAPITAL COST SUMMARY (THOUSANDS OF 1981 DOLLARS)	4-4
5-1	AGT OPERATIONAL STATISTICS AND OPERATIONS AND MAINTENANCE COST BREAKDOWN	5-3
5-2	AGT OPERATIONS AND MAINTENANCE COST MEASURES (1981 DOLLARS)	5-4
5-3	AGT OPERATIONS AND MAINTENANCE COST SUMMARY (1981 DOLLARS)	5-5
A-1	GENERAL AGT SYSTEM CHARACTERISTICS	A-3
A-2	AGT GUIDEWAY CHARACTERISTICS	A-4
A-3	AGT GUIDEWAY PARAMETERS	A-5
A-4	AGT STATION CHARACTERISTICS	A-6
A-5	AGT FLEET CHARACTERISTICS	A-7/A-8

.

1.0 EXECUTIVE SUMMARY

1.1 BACKGROUND

By the end of 1982, domestic Automated Guideway Transit (AGT) systems will have carried over 500 million passengers since their first commercial operation at the Tampa International Airport in 1971. To keep abreast of the domestic use of AGT systems in the United States, the Urban Mass Transportation Administration (UMTA) has sponsored a series of reports on the cost experience of selected domestic AGT systems. The present report is the fifth volume in the series.

AGT systems can be classified using the structure developed in the report entitled "Systems Operation Studies for Automated Guideway Transit Systems". In this classification structure, three major categories of AGT were identified on the basis of traveling unit capacity: Personal Rapid Transit (PRT), Group Rapid Transit (GRT), and Automated Rail Transit (ART). GRT is further partitioned into three distinct ranges of traveling unit capacity: Small Vehicle GRT (SVGRT), Intermediate Vehicle GRT (IVGRT), and Large Vehicle GRT (LVGRT). This series of reports on the AGT cost experience deals with GRT systems exclusively.

The fifteen domestic AGT systems for which data are reported herein are listed by system class and initial operation date in Table 1-1. Note that the systems in Houston and Orlando commenced operation in August and September of 1981, respectively. A system name, if applicable, and the abbreviated system identification used in this report are also provided.

1.2 PASSENGER STATISTICS

1.2.1 Fifteen Systems - 1981

In 1981 the fifteen domestic AGT systems queried carried more than 84 million passengers. Figure 1-1 and 1-2 show the distribution of passengers among the systems during 1981. Figure 1-1 is the distribution of passengers on systems located in international airports; Figure 1-2 is the distribution

TABLE 1-1. LIST OF DOMESTIC GRT SYSTEMS CONSIDERED IN THIS REPORT

SYSTEM CLASS(1)	INIT OPERA DATI	IAL TION E	LOCATION	SYSTEM NAME	ABBREVIATED SYSTEM IDENTIFICATION
SVGRT	JUL	1975	WALT DISNEY WORLD	WEDWAY	DISNEYWORLD (DW)
	SEP	1975	WEST VIRGINIA UNIVERSITY	Morgantown People Mover	MORGANTOWN (M)
	MAR	1976	FAIRLANE SHOPPING CENTER	-	FAIRLANE (F)
	MAY	1980	DUKE UNIVERSITY MEDICAL CENTER	-	DUKE (D)
IVGRT	JAN	1974	DALLAS-FORT WORTH AIRPORT	AIRTRANS	AIRTRANS (A)
	NOV	1977	PEARL RIDGE CENTER	-	PEARLRIDGE (P)
	SEP	1980	HARTSFIELD INTERNATIONAL AIRPORT	-	ATLANTA (AT)
	AUG	1981	HOUSTON INTERCONTINENTAL AIRPORT	WEDWAY PEOPLE MOVER	HOUSTON (H)
LVGRT	APR FEB APR MAY AUG APR SEP	1971 1973 1975 1975 1979 1980 1981	TAMPA INTERNATIONAL AIRPORT SEATTLE-TACOMA INTERNATIONAL AIRPORT KING'S DOMINION AMUSEMENT PARK BUSCH GARDENS MINNESOTA ZOOLOGICAL GARDEN MIAMI INTERNATIONAL AIRPORT ORLANDO INTERNATIONAL AIRPORT	PASSENGER SHUTTLE SYSTEM SATELLITE TRANSIT SYSTEM - - - -	TAMPA (T) SEA-TAC (ST) KING'S DOMINION (KD) BUSCH GARDENS (BG) MINNESOTA ZOO (MZ) MIAMI (M) ORLANDO (0)

(1) CLASSIFICATION OF SYSTEMS AS USED IN THE "SYSTEMS OPERATIONS STUDIES FOR AUTOMATED GUIDEWAY TRANSIT SYSTEMS".

•

FIGURE 1-1. PASSENGERS CARRIED ON SEVEN AGT SYSTEMS LOCATED IN AN AIRPORT ENVIRONMENT

FIGURE 1-2. PASSENGERS CARRIED ON EIGHT AGT SYSTEMS LOCATED IN A NON-AIRPORT ENVIRONMENT of passengers located in other environments - a medical center, two shopping centers, four theme parks, and a university campus.

Over 80 percent of all passengers were carried on systems located at airports. Almost two-thirds of all passengers were carried by the three systems located at international airports in Atlanta, Seattle-Tacoma, and Tampa. Over 50 percent of the passengers carried in a non-airport environment were carried by the two systems located at Disneyworld and Morgantown.

1.2.2 Nine Systems - 1980/81

Table 1-2 presents a comparison of passenger traffic on nine domestic AGT systems for 1980 and 1981. Passenger traffic decreased on all but two systems, at an overall rate of 6 percent. Since over 80 percent of all passengers were carried on systems located at airports, it is instructive to see how domestic airline traffic changed in the same period. According to data provided in the March 1982 issue of "Air Transport World" (p.88), domestic airline passenger traffic decreased by 5.5 percent between 1980 and 1981. It should be noted that the passenger traffic on the four AGT systems located at international airports (shown in Table 1-2) decreased 6.3 percent between 1980 and 1981. Thus, it seems reasonable to assume that the decrease in passenger traffic on several domestic AGT systems between 1980 and 1981 can be explained, in part, by the decline in domestic airline passenger traffic during the same period.

1.3 OPERATION AND MAINTENANCE COST STATISTICS

1.3.1 Fifteen Systems - 1981

In 1981 the fifteen domestic AGT systems queried carried the 84 million passengers at an average operations and maintenance (O&M) cost of \$ 0.19 per passenger. Table 1-3 provides a brief summary. The cost per passenger varied from \$ 0.04 at Tampa to \$ 0.90 at Minnesota Zoo.

SYSTEM	PASSENGERS CARRI 1980	IED (MILLIONS) 1981	CHANGE (%)	
AIRTRANS	7.01	6.50	-7.28	
BUSCH GARDENS	1.37	1.34	-2.19	
DISNEYWORLD	5.33	4.89	-8.25	
MIAMI	4.62	4.72	2.16	
MINNESOTA ZOO	0.37	0.29	-21.62	
MORGANTOWN	3.01	3.11	3.32	
PEARLRIDGE	1.20	1.02	-15.00	
SEA-TAC	10.94	10.72	-2.01	
ТАМРА	19.22	17.22	-10.40	
TÓTALS	53.07	49.81	-6.14	

?

TABLE 1-2. COMPARISON OF PASSENGER TRAFFIC ON NINE DOMESTIC AGT SYSTEMS FOR 1980 AND 1981

SYSTEM	TOTAL O&M COST (MILLIONS)	NUMBER OF PASSENGERS CARRIED (MILLIONS)	O&M COST PER PASSENGER CARRIED (\$)
AIRTRANS	4.739	6.50	0.73
ATLANTA	3.043	26.65	0.11
BUSCH GARDENS	0.182	1.34	0.14
DISNEYWORLD	0.422	4.89	0.09
DUKE	0.462	0.97	0.48
FAIRLANE	1.372 (est.)	2.25	0.61
HOUSTON(1)	0.340	2.50	0.13
KING'S DOMINION	0.076	0.77	0.10
MIAMI	0.317	4.72	0.07
MINNESOTA ZOO	0.258	0.29	0.90
MORGANTOWN	2.259	3.11	0.73
ORLANDO(2)	0.361	1.80	0.20
PEARLRIDGE	0.315	1.02	0.31
SEA-TAC	0.802	10.72	0.07
ТАМРА	0.765	17.22	0.04
TOTALS	15.713	84.75	0.19

TABLE 1-3. SUMMARY OF O&M COST PER PASSENGER CARRIED FOR FIFTEEN DOMESTIC AGT SYSTEMS DURING 1981

.

(1) APPROXIMATELY FOUR MONTHS OF DATA(2) APPROXIMATELY THREE MONTHS OF DATA

1.3.2 Seven Systems - 1980/81

Seven systems reported cost data for both 1980 and 1981. Table 1-4 presents the O&M cost data. The seven systems carried 47.1 million passengers in 1980 at an average O&M cost per passenger of \$ 0.19. In 1981, the same seven systems carried 43.8 million passengers, a 7 percent decrease, at an average O&M cost per passenger of \$ 0.22. This represents a 15.8 percent increase in the O&M cost per passenger. The total expenditures for O&M on these seven systems were \$ 8.911 million in 1980 and \$ 9.560 million in 1981, representing a 7.3 percent increase. Thus, both the increase in O&M expenditures (7.3 percent) and the decrease in passenger traffic (7 percent) combined to approximate the observed increase (15.8 percent) in O&M cost per passenger between 1980 and 1981.

1

1.4 DISCUSSION

Domestic AGT systems are providing transportation for an increasing number of persons at an O&M cost which seems to be increasing at about the same rate as inflation.

The acceptability of AGT as a viable mode of transportation is emphasized by the fact that a new domestic AGT system has initiated service every eight months for the past thirteen years; it appears that this trend will continue. Two AGT systems are presently being constructed in the Miami area: one at the Metro Zoo and another in downtown Miami. AGT systems are also being planned for the 1984 Louisiana World Exposition (New Orleans) and another for Detroit, Michigan.

SYSTEM	O&M COSTS	(MILLIONS)	CHANGE	
	1980	1981	(%)	
AIRTRANS	4.383	4.739	8.12	· · · -
DISNEYWORLD	0.384	0.422	9.90	
MORGANTOWN	2.154	2.259	4.87	
MINNESOTA ZOO	0.255	0.258	1.76	
PEARLRIDGE	0.326	0.315	-3.37	
SEA-TAC	0.797	0.802	0.01	
TAMPA	0.612	0.765	25.00	
TOTAL	8,911	9.560	7.28	

TABLE 1-4. SUMMARY OF O&M COSTS FOR SEVEN DOMESTIC AGT SYSTEMS FOR 1980 AND 1981

2.0 INTRODUCTION

Automated Guideway Transit (AGT) is an innovative form of public transportation in which automatically controlled vehicles are operated on fixed guideways along an exclusive right-of-way. This mode of transit has been installed at a number of sites in the United States and abroad. AGT systems have been in operation in this country over the past ten years, demonstrating an ability to serve a variety of public transportation needs.

This effort, under the sponsorship of UMTA's Office of Methods and Support, represents the fifth in a series of reports that began in 1978. These reports are intended to provide transportation decision makers with a comprehensive source for AGT cost information. Presented in these documents are the capital costs, operations and maintenance (O&M) costs, and system characteristics of selected AGT systems currently operating in the United States. Although additional AGT systems exist in foreign countries, primarily in test configurations, the availability and applicability of cost information are limited. Evaluations of trends over time and comparisons with other transportation modes are also presented.

The previous reports are:

- M. E. von Rosenvinge, "Supplement III: Cost Experience of Automated Transit Systems, " Report No. UMTA-MA-06-0069-81-2, Washington DC, July 1981, PB-81-245656.
- o T. F. Comparato, M.E. von Rosenvinge, D.C. Kendall, "Supplement II: Summary of Capital and Operations & Maintenance Cost Experience of Automated Guideway Transit Systems Costs and Trends for the Period 1976-1979," Report No. UMTA-MA-06-0069-80-1, Washington DC, March 1980.
- o T. F. Comparato, T.M. Dooley, F.A.F. Cooke, et al., "Supplement I: Summary of Capital and Operations and Maintenance Cost Experience of

Automated Guideway Transit Systems Cost and Trends for the Period 1976-1978," Report No. UMTA-IT-06-0188-79-1, Washington DC, March 1979, PB-80-146483.

 F.A.F. Cooke, C.P. Elms, T.J. McGean, H.W. Merrit, "Summary of Capital and Operations & Maintenance Cost Experience of Automated Guideway Transit System," Report No. UMTA-IT-06-0157-78-2, Washington DC, June 1978, PB-294306.

This report supplements the data presented in the above four reports and strives to provide a better understanding of the factors which affect the cost of building and operating an AGT system. The format and content are consistent with previous reports, however, new correlations and more extensive system descriptions have been included. In order to provide the reader with more information and insight into important cost variations, O&M cost data have been obtained and analyzed for ten additional systems.

3.0 OVERVIEW OF AGT SYSTEMS

3.1 EXISTING SYSTEMS

Fifteen domestic AGT systems, all currently in operation, are examined in this report. These systems carried more than 84 million passengers in 1981 and served a variety of transportation needs such as people/goods movement at airports; multi-purpose trips at medical centers, shopping centers, and universities; and attractive, enjoyable rides at recreation centers. Figure 3-1 presents these systems and shows the timing of their construction and operation. Also included in this figure are four systems (Detroit, Miami Downtown, Miami Zoo, and New Orleans) presently being constructed or planned for construction.

AGT systems are being utilized extensively as the primary source of public transportation in many activity center applications. These systems represent a significant range of technology options, site conditions, and performance characteristics. This range of applications results in a diversity of site characteristics and system sizes and configurations varying from the expansive, multi-loop Airtrans system at the Dallas-Fort Worth Airport to the simple shuttle system at the Fairlane Shopping Center in Dearborn, Michigan. Table 3-1 illustrates the variability in system size, configuration, and vehicle capacity between the various systems by presenting the more prominent characteristics of each system. Appendix A contains a more detailed system description by subsystem.

The specific technological configuration employed varies from site-tosite depending on the mobility requirements of the target market and the design approach of the manufacturer. The operational and performance characteristics of these systems also vary reflecting the adaptability of AGT systems to the service needs of the respective sites. Because of this relationship to site conditions and the fact that the AGT deployments have been primarily in activity centers, the transferability of documented cost information and operating experience to other application areas is limited. The following section briefly discusses these limitations.

SYSTEM	INITIAL OPERATION DATE	TIME PERIOD
ТАМРА	4/71	
SEA·TAC	2/73	
AIRTRANS	1/74	
KING'S DOMINION	4/75	
BUSCH GARDENS	5/75	
	7/75	
MORGANTOWN	9/75	
FAIRI ANF	3/76	
PEARLRIDGE	11/77	
MINNESOTA ZOO	8/70	
MIAMI (Airport)	A/90	
	4/80 5/00	***************************************
	5/80	
	9/80	••••••••••••••••••••••••••••••••••••••
HOUSTON	8/81	€ 6 6 3 8 6 (***********************************
ORLANDO	9/81	143154 (133154) I I I I I I I I I I I I I I I I I I
MIAMI (Zoo)	10/82	11111D
NEW ORLEANS	1/84	11110D
MIAMI (Downtown)	7/84	
DETROIT	3/86	
		65 1970 1975 1980 1985
-	esses Constr	uction & Testing Operation Decation

FIGURE 3-1. DOMESTIC AGT DEPLOYMENTS

ì

.

TABLE 3-1. SYSTEM CHARACTERISTICS

 \mathbf{v}

÷

SYSTEM	LOCATION	SUPPLIER	SITE DESCRIPTION	SYSTEM CONFIGURATION	GUIDEWAY ELEVATION	GUIDEWAY LENGTH LANE MILES/ EQUIVALENT ELEVATED LANE MILES (1)	NUMBER OF	NUMBER OF VEHICLES	VEHICLE CAPACITY/EQUIVALENT PASSENGER PLACES (2)	PERIOD OF OPERATION
AIRTRANS	DALLAS, TX	VOUGHT	AIRPORT	SINGLE-LANE MULTI-LOOPS	ELEVATED/ AT-GRADE	12,8/6,66	28	51	40/37	24 HRS/DAY
ATLANTA	ATLANTA, GA	WESTINGHOUSE	AIRPORT	DUAL-LANE SHUTTLE WITH BYPASS	UNDERGROUND	2,29/6,87	10	17	80/91	21 HRS/DAY
BUSCH GARDENS	WILLIAMSBURG, VA	WESTINGHOUSE	RECREATION CENTER	SINGLE-LANE	ELEVATED/ AT-GRADE	1.33/0.84	2	2	96/89	11 HRS/DAY (MAROCT_)
DISNEYWORLD	ORLANDO, FL	WED TRANS. SYSTEM, INC.	RECREATION	SINGLE-LANE LOOP	ELEVATED	0.87/0.87	1	30 (5 car train)	20/48	13 HRS/DAY*
DUKE	DURHAM, NC	0715/770	MEDICAL CENTER	DOUBLE~LANE AND SINGLE- LANE SHUTTLE	ELEVATED/ AT-GRADE/ UNDERGROUND	0.56/0.61	3	4	22/51	24 HRS/DAY
FAIRLANE	DEARBORN, MI	FORD	SHOPP ING CENTER	SINGLE-LANE SHUTTLE WITH BYPASS	ELEVATED	0.61/0.61	2	2	24/41	12.0 HRS/DAY 6.0 HRS SUN.
HOUSTON	HOUSTON, TX	WED TRANS, SYSTEM, INC,	AIRPORT	SINGLE-LANE LOOP	UNDERGROUND	1.48/4.43	9	6 (3 car train)	36/17	24 HRS/DAY
KING'S DOMINION	DOSWELL, VA	UNIVERSAL MOBILITY	RECREATION	SINGLE-LANE LOOP	ELEVATED/ AT-GRADE	2.06/0.88	I	6 (9 car train)	96/168	11 HRS/DAY (APROCT.)
MIAMI	MIAMI, FL	WESTINGHOUSE	AIRPORT	DUAL-LANE SHUTTLE	ELEVATED	0.51/0.51	. 2	6	99/88	24 HRS/DAY
NINNESOTA ZOO	APPLE VALLEY, MN	UNIVERSAL MOBILITY	RECREATION CENTER	SINGLE-LANE	ELEVATED/ AT-GRADE	1.36/1.28	1	3 (6 car train)	94/123	10 HRS/DAY*
MORGANTOWN	MORGANTOWN, WV	BOEING	UNIVERSITY	DUAL-LANE WITH OFF-LINE STATIONS	EVEVATED/ AT-GRADE	8.60/6.79	5	71	21/26	76 HR\$/WK
ORLANDO	ORLANDO, FL	WESTINGHOUSE	AIRPORT	2 DUAL-LANE SHUTTLES	ELEVATED	1.48/1.48	6	8	100/88	24 HRS/DAY
PEARLRIDGE	AIEA, HI	ROHR	SHOPPING CENTER	SINGLE-LANE SHUTTLE	ELEVATED/ AT-GRADE	0.23/0.21	2	1 {4 car train)	64/60	69 HRS/WK
SEA-TAC	SEATTLE, WA	WESTINGHOUSE	AIRPORT	2 SINGLE-LANE LOOPS WITH SHUTTLE CONNECTION	UNDERGROUND	1,71/5,13	8	12	102/86	20-24 HR\$/DAY
ТАМРА	TAMPA, FL	WESTINGHOUSE	AIRPORT	4 DUAL-LANE SHUTTLES	ELEVATED	1,35/1,35	8	8	100/84	18

٠ Annual Average

Actual lengths of at-grade, elevated, and underground guideways have been converted to Equivalent Elevated Lane Miles by use of the following factors: 0.4-at-grade;

 Actual lengths of at-grade, elevated, and underground,
 Calivalent Passenger Places per vehicle have been calculated on an allocation of 4 square feet per passenger, based on the gross area (length x width) of the vehicles for each system.

3.2 APPLICABILITY OF EXISTING AGT COST AND SERVICE INFORMATION TO ALTERNATIVE SETTINGS

Domestic AGT systems are currently serving airports; medical, recreation, and shopping centers; and a university. Only the Morgantown system, connecting downtown Morgantown with the West Virginia University campus, provides service in a setting that approximates that of an urban public transportation system. The other systems operate within an area owned by the corporation or authority managing the activity center. These are very different environments from an urban area. Consequently, the capital costs associated with these systems do not include a number of major components that would be included in the cost of an urban deployment.

The decision to deploy AGT systems in urban settings would be based on the mobility requirements of the area in conjunction with land use patterns and population densities. These areas are usually characterized by high population density, a mix of commercial and residential land use, and high levels of vehicular and pedestrian traffic. These conditions have major implications for the design and cost of AGT systems. Vehicle size and system throughput capacity must accommodate passenger loads during peak periods. Station size and spacing are also influenced by the need for intermodal transfer points connecting AGT with other public transportation services (e.g., park and ride lots).

Other costs not identified with current AGT systems include right-of-way (ROW) acquisition, site modification, and costs associated with construction in an urban area. ROW acquisition costs depend on property values, local easements, and the extent to which existing rights-of-way can be utilized for portions of the network. Site modification costs are affected by site-specific variables such as soil conditions and topography, utility relocation, street modifications, traffic control, site accessibility, labor rates, local codes, etc. Costs associated with construction in urban areas include integrating AGT stations with existing commercial structures to minimize the disruptive impact on businesses in the downtown area and the installation of security systems to protect against vandalism and crime.

Additionally, there will be procedural and regulatory requirements in the deployment of any form of urban public transportation that existing activity center AGT systems did not have to adhere to. In order to use public funds to construct a new transportation system, an institutional/political process of design review, public acceptance, and funding commitment must take place. This process is a lengthy one involving local, regional, state, and Federal government agencies. Substantial engineering costs can be incurred during this phase, especially if major revisions must be made to the system design. The timetable for this phase is usually on the order of 2 to 5 years; hence, cost increases due to inflation may also occur before construction begins.

While there are constraints and complexities associated with urban AGT deployment that have not been encountered by AGT systems operating in activity centers, the existing AGT systems have exhibited a range of technology and performance sufficient to comply with urban system requirements. The point to be made, however, is that the total capital costs reported herein are not directly transferable because of site-specific factors in urban areas that impact costs and schedules.

4.0 CAPITAL COSTS

4.1 INTRODUCTION

This section presents capital cost data compiled for thirteen AGT systems. Data for the systems located at Duke University Medical Center and Pearl Ridge Center are not available.

Capital cost information was obtained primarily through responses by systems and suppliers and site surveys performed as part of UMTA-sponsored assessments. Where available, actual capital acquisition costs have been used and adjusted to average 1981 dollars. However, analysis of available data shows that the various AGT systems maintained their cost records in different formats. Also, in many cases the AGT system is an integral part of a larger facility and the costs have not always been recorded separately. Due to these facts, engineering estimates were used to duplicate the subject systems and have been adjusted to average 1981 dollars. These duplication costs generally do not consider the specific location of the system being examined, but rather are estimates based on up-to-date construction costs for equivalent generic systems.

To facilitate analysis and understanding of AGT capital costs, seven cost categories have been identified. They are defined as follows:

- <u>Guideway</u> The vehicle roadway including site preparation, foundations, supporting structures, pedestrian walkways, running and guidance surfaces, wayside switching equipment, and special facilities for melting snow and ice if required.
- <u>Stations</u> Passenger loading platforms, shelters, access facilities such as ramps, stairways, escalators, elevators, graphics, fare collection equipment, coordinated doors, and other facilities related to the movement of passengers into and out of vehicles.

- <u>Maintenance and Support</u> Maintenance and storage facilities including special vehicles and equipment.
- o <u>Power and Utilities</u> Electric power transformers, feeders, switchgear, wayside power rails, and normal housekeeping power equipment.
- o Vehicles The rolling stock.
- <u>Command and Control</u> Wayside and central control and communications equipment including operational software and voice and video communication systems.
- o Engineering and Project Management Architectural and engineering services, system design and integration, acceptance testing, and overall project management.

4.2 COST ADJUSTMENTS

As shown in Figure 3-1, the AGT systems reviewed in this report were not all constructed at the same time. For the purpose of comparative analysis, the capital costs have been adjusted to a uniform 1981 price level. In order to remain consistent with past reports, the same indices for cost adjustments have been used and are explained below:

- O CPI: The Consumer Price Index for urban wage earners and clerical workers (U.S. cities average) is used to adjust all costs for engineering and project management.
- o PPI: The Producer Price Index for machinery and motive products (previously called the Wholesale Price Index) is used to adjust all hardware costs.
- ENR: The Engineering News Record 20-city construction cost index is used to adjust the cost of all fixed facility construction.

All three indices have a base of 100 for 1967. Listed below are the indices used and their yearly averages. These yearly averages have been used to adjust system capital costs when applicable. For other systems, the starting point for adjusting capital costs has been either the midpoint of construction or date of procurement.

YEARS	CPI	PPI	ENR
1975	161.2	156.2	206.0
1976	170.3	165.8	223.0
1977	181.5	176.6	240.0
1978	195.4	190.4	258.0
1979	217.4	206.9	279.5
1980	246.8	225.8	301.5
1981	272.4	256.7	329.0

Research and development costs and right-of-way acquisition costs have been removed from the data as much as possible since capital cost estimates for future AGT systems will not include them.

4.3 CAPITAL COST EXHIBITS

Capital cost data for thirteen AGT systems are summarized in Table 4-1. This table delineates the total system cost for each AGT system by cost category and presents each subsystem cost in terms of percentage of total system cost. This allows the subsystem costs of both large and small systems to be evaluated on a normalized basis.

Figure 4-1 shows the average distribution of capital costs among the major cost categories. Although each system is unique in some respect, these averages can be used for estimating how the cost for new systems will be dispersed.

	AIRTRANS	ATLANTA	BUSCH GARDENS	D I SNEY- WORLD	FAIRLANE	HOUSTON	KING'S DOMINION	MIAME	MINNESOTA ZOO	MORGAN- TOWN	ORLANDO	SEA-TAC	ТАМРА
GUIDEWAY TOTAL COST ≸ OF TOTAL SYSTEM COST	18,982 .21	20,613	2,530	2,899	3,061	8,579 •36	1,589	3,618 ,25	3,232 ,34	59,708 .25	5,668 .20	18,247	5.017
STATIONS TOTAL COST \$ OF TOTAL SYSTEM COST	10,242 _11	10,835	192	2,370	614 .07	5,188 ,22	265 .03	5,975 •27	385 .04	7,246	4,532	8,152	3,311
MAINTENANCE & SUPPORT TOTAL COST \$ OF TOTAL SYSTEM COST	5,663 .06	4,004	338 .05	885 •05	175	377 .02	305 .03	1,099	803 .08	6,233 .04	2,357	4,238 ,08	1,346
POWER & UTILITIES TOTAL COST \$ OF TOTAL SYSTEM CUST	7,680 .08	3,902 .06	586 .08	1,224 .06	1,447	613 .03	496 .06	620 •04	919 .10	10,004 .07	1,057	2,506 .05	3,293
VEHICLES TOTAL COST \$ OF TOTAL SYSTEM COST	18,950 .20	13,908	1,279	4,956 .27	1,137	1,264 .05	3,495	1,696 ,12	2,924	20,876	5,643 .20	7,689	4,194
COMMAND & CONTROL TOTAL COST \$ OF TOTAL SYSTEM COST	10.034	5,124 _07	766	5,001 _27	1,138	2,660 .11	54 .01	1,229 .08	433	30,327 19	6,284	3,158 .06	2,143
ENGINEERING & PROJECT MGT. TOTAL COST \$ OF TOTAL SYSTEM COST	21,161	10,039 .15	1,342	1,302 .07	1,734 .19	5,070 .21	2,259	2,536	862 _09	42,694	2,860 .10	8,241 ,16	2,340
TOTAL SYSTEM COST	92,712	68,425	7,055	18,637	9,306	23,751	8,463	14,773	9,558	157,088	28,401	52,231	21,704

--

TABLE 4-1. AGT CAPITAL COST SUMMARY (THOUSANDS OF 1981 DOLLARS)

.

1.1

.

.

٢

FIGURE 4-1. AVERAGE DISTRIBUTION OF CAPITAL COSTS FOR THIRTEEN AGT SYSTEMS

.

Differences in system size makes cost comparisons difficult. Figures 4-2 and 4-3 take into account system size differences when comparing subsystem costs. In these figures, correlations between guideway costs and equivalent elevated lane miles, and unit vehicle cost and equivalent passenger places are displayed graphically. A linear regression analysis has been used to correlate these costs as a function of the independent variables. (The specific routine used was the Stepwise Multi-Variate Linear Regression Procedure in the Statistical Package for the Social Sciences (SPSS)). The resulting regression curves, which represent the scattered data points, are shown on the appropriate figures where Y represents the abscissa and X represents the ordinate.

4.4 DISCUSSION OF CAPITAL COST VARIATIONS

One of the primary reasons for the variations in total system costs is the difference in system size, ranging from one-half mile at Miami to almost thirteen miles at Airtrans. Some effects of size differentials are removed by normalizing the cost data around size-related parameters; however, economies of scale inherent in the larger systems must still be considered.

In addition to economies of scale, major cost variations are attributable to other general characteristics of the systems. These characteristics include site description, site location, technology employed, bid competitiveness, and degree of regulation. Site descriptions vary from airports and a university to medical, recreation, and shopping centers. The differing design factors for each system (e.g., an airport system requiring almost 100 percent availability, 24 hours per day, 365 days per year or a recreation center system needing 80 percent availability, 12 hours per day, 140 days per year) impact total system costs.

Locations vary from sites located near metropolitan areas such as Atlanta and Miami to nonurban settings such as Doswell, Virginia and Apple Valley, Minnesota. AGT deployments in urban locations can be expected to cost more than similar deployments in nonurban settings. Studies have shown that construction in urban areas may cost 25 to 50 percent above projects in nonurban locations; among urban locations, construction cost indices may vary by 30 to 50 percent. This is due primarily to the increased amount of construction time required in an urban environment and the higher prices for labor and

à

NOTE: The Resulting Curve Is Based On All Points And Has A Correlation Coefficient Of 0.88.

FIGURE 4-2. REGRESSION OF GUIDEWAY COST ON EQUIVALENT ELEVATED LANE MILES

FIGURE 4-3. REGRESSION OF UNIT VEHICLE COST ON EQUIVALENT PASSENGER PLACES
materials generally found in urban areas. More lengthy urban construction times are estimated to add 17 to 25 percent to civil costs, while higher urban prices for labor, materials, and contingencies are estimated to add 8 to 26 percent to civil costs.

The technology employed will also vary costs. Aside from basic differences in the technical sophistication of the control system, performance requirements such as capacity, safety, and reliability can also influence the cost between various systems.

Another factor contributing to cost variations is the competitiveness of supplier bids. As a general rule, sole source contracts may be expected to have higher costs than systems bid by three or four suppliers.

Finally, the extensiveness of regulations, local code requirements, and technical and performance specifications that must be met by the supplier may weigh heavily on total project costs.

The following sections provide a brief discussion of factors and considerations that may result in cost variations of the seven major capital cost categories for each of the AGT systems. Appendix A contains a more detailed description of the subsystem characteristics of these systems.

4.4.1 Guideway

The construction and installation costs associated with the guideway element of an AGT system are functions of many factors, both design-specific and site-specific, that may result in widely varying unit cost ranges. Unit guideway costs are based on equivalent elevated lane miles and range from \$ 1,806,000 per lane mile at King's Dominion to \$ 7,094,000 at Miami; the average cost is approximately \$ 3,500,000 per lane mile. The distribution of guideway costs vary from 15 percent of total system costs at Disneyworld to 36 percent at Busch Gardens and Houston.

Among the factors resulting in cost variations are:

- o Beam shape, width, and span length.
- o Single- or dual-lane construction.
- o Guideway materials and construction techniques.
- o Guideway load capacity.
- o Guideway curvature and column height.
- o Emergency egress provisions.
- o Climate and all-weather provisions.
- o Percent of guideway elevated, at-grade, and underground.
- o Number and type of switches, crossovers, and turntables.
- o Guideway aesthetics and environmental considerations.
- o Local topographical and soil conditions.
- o Local labor and material rates.
- o Degree of utility and street relocations.

4.4.2 Stations

Station costs, like guideway costs, may vary significantly due to both design-specific and site-specific factors. The distribution of station costs range from 3 percent of total system costs at Busch Gardens and King's Dominion to 27 percent at Miami.

Among the factors resulting in cost variations are:

- o Size and number of stations.
- Station materials and construction techniques.
- o Number of stations elevated, at-grade, and underground.
- Station design (open vs. enclosed; freestanding vs. contiguous vs. joint use).
- o Platform design (sides or island).
- o Climate control and amenities.
- Station aesthetics and environmental considerations.
- o Amount and type of graphics.
- Amount and type of fare collection equipment.

- o Amount and type of bi-parting doors or separations.
- o Amount and type of elevators and escalators.
- o Local topographical and soil conditions.
- o Local labor and material rates.

4.4.3 Maintenance and Support

Maintenance and support facilities costs, impacted by many of the same factors affecting station costs, result in variations from one deployment to the next. The distribution of costs range from 2 percent of total system costs at Fairlane and Houston to 8 percent at Minnesota Zoo, Orlando, and Sea-Tac.

Among the factors resulting in cost variations are:

- o Number and size of vehicles.
- o Overall size of the maintenance facility.
- o Size of administrative space.
- o Amount and type of tools and equipment.
- o Facility aesthetics and environmental considerations.
- o Local topographical and soil conditions.
- o Local labor and material rates.
- o Storage of vehicles (indoor vs. outdoor).

4.4.4 Power and Utilities

,

Power and utility costs also vary from system-to-system. The distribution of costs range from 3 percent of total system costs at Houston to 15 percent at Fairlane and Tampa.

Among the factors resulting in cost variations are:

- o Type of power supply available.
- o Type of power system (basic or redundant).
- o Total length of system.
- o Single- or dual-lane construction.

4.4.5 Vehicles

Vehicle costs, even among vehicles provided by the same suppliers, vary considerably due to design characteristics. Individual vehicle costs are based on equivalent passenger places and range from \$ 3,400 per passenger place at Disneyworld to \$ 13,900 at Fairlane; the average cost is approximately \$ 7,500 per passenger place. The distribution of vehicle costs vary from 5 percent of total system costs at Houston to 41 percent at King's Dominion.

Among the factors resulting in cost variations are:

- o Vehicle size and weight.
- o Vehicle propulsion systems.
- Vehicle control systems.
- o Type of operation (independent units vs. trains).
- o Type of vehicle (active vs. passive).
- o Climate control and interior design.
- Vehicle switching capabilities.
- o Emergency and failure requirements.
- o Performance requirements.
- o Size of vehicle order.
- o Competitiveness of vehicle bids.

4.4.6 Command and Control

Command and control costs will vary from system-to-system based on the operating strategies and requirements at each deployment. The distribution of cost range from 1 percent of total system costs at King's Dominion to 27 percent at Disneyworld.

Among the factors resulting in cost variations are:

- o Number of vehicles.
- o Number of lane miles.

- o Number of stations.
- o Type of central control.
- o Type of vehicle control.
- o Type of guideway and wayside control.
- o Type of station control.
- o Amount and type of two-way radios.
- o Amount and type of PA's, CCTV's, and telephones.

4.4.7 Engineering and Project Management

Engineering and project management costs vary among deployments due to differences in construction techniques and management strategies. The distribution of costs range from 7 percent of total system costs at Disneyworld to 27 percent at King's Dominion and Morgantown.

- Among the factors resulting in cost variations are:
 - o Size of system.
 - o Length of construction schedule.
 - o Degree of regulatory requirements.
 - o Amount of systems testing required.
 - o Size of project management staff and number of consultants.

. I

.

.

.

.

•

5.0 OPERATIONS AND MAINTENANCE COSTS

5.1 INTRODUCTION

This section presents cost and performance information on the operation and maintenance of selected AGT systems. Data have been compiled and analyzed for fifteen AGT systems in the United States. Included for the first time are operations and maintenance (O&M) costs for systems in Houston and Orlando which opened for service in August and September of 1981.

To aid in the analysis of O&M cost data, O&M costs were reported in the four cost categories described below:

- o <u>Labor</u> Costs associated with the personnel for system administration and engineering, operation, and maintenance.
- o Utilities Costs of electricity, natural gas, etc.
- <u>Materials and Services</u> Costs for spare parts and materials as well as contract services.
- <u>General and Administrative</u> Any pro rata share of the general management costs as well as other overhead costs.

When comparing the actual 1981 O&M costs for AGT systems with the data for both AGT and conventional transit, the Consumer Price Index (CPI) for urban wage earners and clerical workers in the United States (defined in Section 4.2) was used to adjust the costs to average 1981 dollars. O&M cost information for conventional transit was obtained from the <u>Transit Fact Book</u> <u>1981</u> published by the American Public Transit Association. Costs for conventional transit (i.e., bus and rail) have been adjusted to exclude amounts spent for traffic solicitation, advertising, depreciation, amortization, taxes, licenses, rents, etc., since the AGT O&M costs do not include them.

Conventional transit O&M cost data for 1981 were not yet available at the time of report publication. Because of the time required to compile the data for the <u>Transit Fact Book</u>, totals for 1980 are subject to change. Changes in totals for years prior to 1980 result from subsequently available data.

5.2 O&M COST EXHIBITS

A detailed accounting of 1981 0&M costs for each system is shown in Table 5-1 along with other pertinent operating information. The operational statistics include: vehicle miles traveled, equivalent place miles, passengers carried, and system operating hours.

A breakdown of O&M cost measures is shown in Table 5-2. In this table, O&M costs for each system are normalized by the operating parameters recorded in Table 5-1.

O&M cost data for the fifteen AGT systems are summarized in Table 5-3. This table delineates the total system cost for each AGT system by cost category and presents each category in terms of percentage of total O&M cost.

Figure 5-1 shows the average distribution of 0&M costs among the major cost categories. These averages can be used to estimate how 0&M costs for new systems may be dispersed.

Figures 5-2 through 5-5 present the total O&M cost for each system versus the vehicle miles traveled, equivalent place miles, passengers carried, and system operating hours. These figures are furnished in order to provide average cost data so that O&M cost projections for future systems can be extrapolated based on proposed operating characteristics. A linear regression analysis has been used to correlate this cost as a function of the independent variables. (The specific routine used was the Stepwise Multi-Variate Linear Regression Procedure in the Statistical Package for the Social Sciences (SPSS)). The resulting regression curves, which represent the scattered data points, are shown on the appropriate figures where Y represents the abscissa and X represents the ordinate.

TABLE 5-1. AGT OPERATIONAL STATISTICS AND OPERATIONS AND MAINTENANCE COST BREAKDOWN

• .

.

			BUSCH					KING'S		MINNESOTA			1.		
	ATRITRANS	ATLANTA	GARDENS	DISNEYWORLD	DUKE	FAIRLANE	HOUSTON	DOMINION	MIAHI	Z00 (1)	MORGANTOWN	ORLANDO	PEARLRIDGE	SEA-TAC	- Tampa
OPERATIONAL STATISTICS							•								
VEHICLE MILES TRAVELED	2,982,533	767,913	23,222	577,896	69,216	73,391	75,652	50,568	232,703	6,532	994,555	183,700	12,211	574,425	555,89
EQUIVALENT PLACE MILES(2)	110, 353, 721	69,880,085	2,066,758	27,739,008	3,530,016	3,009,031	1,289,484	Q,495,424	20, 477, 864	803,436	25,858,430	16,165,600	732,660	49,400,5 50	29,895,34
PASSENGERS CARRIED	6,499,407	26,652,000	1,342,256	4,885,042	'968,040	2,249,684	2,500,000	770,000	4,724,631	287,800	3,113,520	1,804,000	1,020,595	10,721,825	17,223,14
SYSTEM OPERATING HOURS	8,615	7,665	1,565	4,114	8,760	3,874	2,688	1,364	8,760	2,120	5,722	2,472	3 665	8,030	5,38
OUN COSTS (1981 DOLLARS)												· · · · · · · · · · · · · · · · · · ·	······································		
LABOR	.	2,447,212	3											637, 360	
ADMINISTRATIVE & ENGINEER	ING 317,628		8,000	0	29,442	N/A		0		0	260,291	2,000	60,700	-	15,37
OPERATIONS	346,534	-	46,000	156,200	67,073	N/A	Provided	. 30,000 -	Provided	78,864	248,669	18,180	43,748	- ,	5,66
MAINTENANCE	2,071,153	-	57,500	74,879	291,667	N/A	Contract	0	Contract	125,100	570,616	286,900	117,038	-	9,70
DTHER	682,308	-	0	41,000	0	N/A		0		0	0	0	0	-	
UTILITIES															
ELECTRICITY	341,908	113,622	14,000	68,420	13,560	N/A	8,754	38,833	60,146	28,849	223, 168	37,187	9,612	21,541	AA ,94
GAS	0	0	0	0	0	N/A	σ	0	0	1,509	179,917	0	° O	0	
TELEPHONE	a	0	. 0	0	0	N/A	0	0	0	0	0	O	1,243	0	
MATERIALS & SERVICES							·	÷		· ·					
SPARE PARTS & MATERIALS	685 302	43 417	23 500	50.063	60,000	N /A		8,000		12 281	127 661	0	12 569	113 000	
CONTRACT SERVICES	202,980	188,752	33,000	0	0	N/A	328,404	0	256, 364	3,062	263, 184	13,991	2,280	30,000	534,68
GENERAL & ADMINISTRATIVE	91,238	249,996	. 0	31,240	0	N/A	o	o	0	8,497	165,449	3,000	67,912	0	16,50
TOTAL OW COST	4,739,051	3,042,999	182,000	421,802	461,742	1,372,307	337,158	76,833	316,910	258,112	2,258,957	361,258	315, 102	801,901	765,23

- No entry in this category in the accounting records of the operator.

...

.

(1) Totals affected by employee strike from 7/20/81 - 8/12/81.

.

(2) Equivalent Place Miles are computed by multiplying equivalent passenger places par vehicle by the vehicle miles traveled for each system.

.

N/A Not Available

· ·

SYSTEM	O&M COST PER Vehicle Mile Traveled	O&M COST PER EQUIVALENT PLACE MILE	O&M COST PER PASSENGER CARRIED	O&M COST PER SYSTEM OPERATING HOUR
· .			······	
AIRTRANS	1.59	0.043	0.73	.550.00
ATLANTA	3.96	0.044	0.11	397.00
BUSCH GARDENS	7.84	0.088	0.14	116.00
DISNEYWORLD	0.73	0.015	0.09	103.00
DUKE	.6.67	0.131	0.48	53.00
FAIRLANE	18.70	0.456	0.61	354.00
HOUSTON(1)	4.44	0.261	0.13	125.00
KING'S DOMINION	1.52	0.009	0.10	56.00
MIAMI	1.36	0.015	0.07	36.00
MINNESOTA ZOO	39.52	0.321	0.90	95.00
MORGANTOWN	2.27	0.087	0.73	395.00
ORLANDO(2)	1.97	0.022	0.20	146.00
PEARLRIDGE	25.80	0.430	0.31	86.00
SEA-TAC	1.40	0.016	0.07	100.00
ТАМРА	2.15	0.026	0.04	142.00

TABLE 5-2. AGT OPERATIONS AND MAINTENANCE COST MEASURES (1981 DOLLARS)

4

APPROXIMATELY FOUR MONTHS OF DATA.
 APPROXIMATELY THREE MONTHS OF DATA.

÷

5-4

.

				BUSCH					KING*S		MINNESOTA					
	AIRTRANS	ATLANTA	GARDENS	DISNEYWORLD	DUKE	FAIRLANE	HOUSTON	DOMINION	MLANI	200	MORGANTOWN	ORLANDO	PEARLRIDGE	SEA-TAC	T AMPA	
													<u> </u>			
LABOR																
TOTAL COST	3,417,623	2,447,212	111,500	272,079	388,182	N/A	0	30,000	0	203,964	1,099,576	307,080	221,486	637,360	30,746	
S OF TOTAL OSM COST	.72	.80	.61	.65	,84	N/A	0		0	, 79	.49	.85	.70	. 79	.04	
UTILITIES																
TOTAL COST	341,098	113,622	1,0040	68,420	13,560	N/A	8,754	38,855	60, 146	30, 356	403,085	37,187	10,855	21,541	68,947	
S OF TOTAL OSM COST	.07	.04	, 08	.16	.03	N/A	.03	.51	. 19	. 12	. 18	. 10	.03	.03	. 12	
NATERIALS & SERVICES										,					,	
TOTAL COST	688,282	232,169	5,5060	50,063	60,000	N/A	328,404	8,000	256,364	15,293	590,847	13,991	14,849	143,000	629,040	
S OF TOTAL OUN COST	. 19	.08	.31	. 12	.13	N/A	. 97	.10	.61	.06	. 26	.04	.05	.18	.82	
GENERAL & ADMINISTRATIVE																
TOTAL COST	91,238	249,996	0	31,240	0	N/A	0	0	0	8,497	165,449	3,000	67,912	D	16,500	
S OF TOTAL OLM COST	,02	.08	0	.07	0	N/A	0	0	0	.03	_07	.01	.22	0	.02	
TOTAL CAM COST	4,739,051	3.042.999	182,000	421,802	461,742	1,372,307	337,158	76,885	316,310	258,112	2,258,957	361,258	315,102	801.901	765.233	
				、 -	•	(est.)	- •	•		,		•	• -		-,	

.

TABLE 5-3. AGT OPERATIONS AND MAINTENANCE COST SUMMARY (1981 DOLLARS)

 \sim .

NOTE: The Resulting Curve Is Based On All Points And Has A Correlation Coefficient Of 0.90.

FIGURE 5-2. REGRESSION OF O&M COST ON VEHICLE MILES TRAVELED

EQUIVALENT PLACE MILES (Millions)

FIGURE 5-3. REGRESSION OF O&M COST ON EQUIVALENT PLACE MILES

NOTE: The Resulting Curve Is Based On All Points And Has A Correlation Coefficient Of 0.43.

FIGURE 5-4. REGRESSION OF O&M COST ON PASSENGERS CARRIED

SYSTEM OPERATING HOURS (Thousands)

NOTE: The Resulting Curve Is Based On All Points And Has A Correlation Coefficient Of 0.52.

FIGURE 5-5. REGRESSION OF O&M COST ON SYSTEM OPERATING HOURS

Figures 5-6 through 5-12 present 0&M trends for the five oldest, yearround operating systems (i.e., Airtrans, Disneyworld, Morgantown, Sea-Tac, and Tampa). These figures depict trends over the last six years for 0&M costs, pertinent operational statistics, and associated cost measures. Data on the passengers carried were not available prior to 1979. 0&M information was not available for Morgantown in 1979 because it was closed for construction of Phase II.

Figures 5-13 through 5-15 exhibit 0&M cost trends for AGT in relation to conventional transit. These figures display trends over the last six years for average 0&M costs per vehicle mile traveled, equivalent place mile, and passenger carried. Once again it should be noted that data on the passengers carried prior to 1979, and 1979 0&M information for Morgantown were not available.

Figure 5-16 compares average O&M cost per vehicle mile traveled for the following types of transit systems: AGT, Bus, Trolley Coach Bus, and Heavy and Light Rail.

5.3 DISCUSSION OF O&M COST VARIATIONS

The breakdown of O&M costs by specific categories may not be comparable due to the lack of uniformity in the reporting of O&M costs at the various systems. However, the totals are reasonably accurate. To follow is an assessment of the information contained in the O&M cost exhibits.

5.3.1 Cost Analysis

When analyzing O&M costs it should be understood that certain components vary as a function of the number of miles accumulated on the vehicles, while other components represent fixed costs that are independent of vehicle mileage. Cost components that vary with vehicle mileage are related primarily to maintenance of the system (i.e., maintenance labor, spare parts, and

FIGURE 5-8. TREND OF EQUIVALENT PLACE MILES FOR FIVE AGT SYSTEMS

FIGURE 5-10. TREND OF O&M COST PER VEHICLE MILE TRAVELED FOR FIVE AGT SYSTEMS

FIGURE 5-11. TREND OF O&M COST PER EQUIVALENT PLACE MILE FOR FIVE AGT SYSTEMS

FIGURE 5-12. TREND OF O&M COST PER PASSENGER CARRIED FOR FIVE AGT SYSTEMS

FIGURE 5-13. TREND OF O&M COSTS PER VEHICLE MILE TRAVELED FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT

O&M COST PER VEHICLE MILE TRAVELED (Dollars)

NOTE: Equivalent Passenger Places For Conventional Transit Was Derived From Previous Year Data, An Average Of 92 Places Was Computed,

FIGURE 5-14. TREND OF O&M COSTS PER EQUIVALENT PLACE MILE FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT

FIGURE 5-15. TREND OF O&M COSTS PER PASSENGER CARRIED FOR FIVE AGT SYSTEMS AND CONVENTIONAL TRANSIT

FIGURE 5-16. COMPARISON OF O&M COST PER VEHICLE MILE TRAVELED FOR FIVE DIFFERENT TRANSIT MODES

materials). Fixed costs are those components normally associated with operation and administration of the system on a daily basis. Utility costs can be comprised of both variable and fixed. Power used for vehicle propulsion varies with vehicle miles traveled while power used for system lighting and communication remains fixed. For those systems having guideway heating systems such as Morgantown's, another cost component is introduced into the O&M cost each year.

. .

1

The average distribution of O&M costs for fourteen AGT systems operating in the United States is shown in Figure 5-1. (A breakdown of total O&M costs for Fairlane was not available). However, a wide range of distributions exist and in some cases differ significantly from the average. Therefore, high and low values for each O&M cost category are shown below:

0	Labor:
	High - Orlando (85%)
	Low - Houston, Miami (0%)
0	Utilities:
	High - King's Dominion (51%)
	Low - Duke, Houston, Pearlridge, Sea-Tac (3%)
0	Materials and Services:
	High - Houston (97%)
	Low - Orlando (4%)
0	General and Administrative:
1	High – Pearlridge (22%)
	Low - Busch Gardens, Duke, Houston, King's Dominion, Miami,
	Sea-Tac (0%)

Variations in labor costs are often due to differences in wage rates found in different geographic areas. Variations are also dependent on whether laborers are dedicated to only AGT servicing or are part of the O&M crew for the entire facility for which the system is a part. The lack of labor costs for Houston and Miami and the low figure for Tampa (4 percent) are reflected in correspondingly high materials and services costs. This is due to a contract services agreement that places labor dollars in the materials and services category. Data received on utilities reflects a wide range in the costs. This may be due to regional differences in cost per kilowatt hour (kwh). For example, Atlanta reports a cost of \$ 0.04 per kwh, King's Dominion \$ 0.065 per kwh, Miami \$ 0.09 per kwh, and Sea-Tac \$ 0.015 per kwh.

Variations in materials and services costs have already been touched on. Percentages at the high end of the range are due to labor dollars being included through contract services agreements. The low figure for Orlando is due to a warranty on the new system for which there is no charge for any necessary spare parts and materials.

The zero dollar amounts for general and administrative costs at Busch Gardens, Duke, Houston, King's Dominion, Miami, and Sea-Tac are because the systems are considered part of the overall facility so that these costs are not separately recorded.

5.3.2. Operational Analysis

When comparing O&M costs it is important to identify the levels of service provided and the operating environment. These differing factors will impact the total O&M cost for each system. Correlations between various operating characteristics and O&M costs are evident from the linear regression analysis performed with the data shown in Figures 5-2 through 5-5.

Based on the fifteen operating AGT systems, the following average cost measures for 1981 were calculated:

0 0&M Cost per Vehicle Mile Traveled = \$ 2.25
0 0&M Cost per Equivalent Place Mile = \$ 0.042
0 0&M Cost per Passenger Carried = \$ 0.19
0 0&M Cost per System Operating Hour = \$ 208.35

Generally, the more vehicle miles traveled, passengers carried, and hours in operation, the higher the total O&M cost; likewise, the fewer vehicle miles traveled, passengers carried, and hours in operation, the lower the total O&M

cost. Airport systems have the greatest overall 0&M costs which is to be expected since these systems operated 20 to 24 hours per day year-round and transported over 82 percent of all passengers carried in 1981. Houston and Orlando appear to be exceptions; however, it must be remembered that they were only in operation for less than six months in 1981.

5.3.3 Trend Analysis

While the average figures for O&M costs and operating statistics have remained relatively stable over the last six years, totals for 1981 showed an overall decline. This is not surprising since almost half of the domestic AGT systems are located at airports.

O&M unit cost measures showed a tendency to increase over the past year. This is consistent with the downward trends in vehicle miles traveled, equivalent place miles, and passengers carried described earlier. Once again the ramifications of reduced air travel is exemplified through its impact on supplementary transit services.

5.3.4 AGT and Conventional Transit O&M Cost Comparison

When comparing the O&M costs of AGT systems with conventional transportation modes it is important to recognize that such comparisons are relevant only when all modes provide the same type and level of service. Existing AGT systems provide circulation service in relatively small, specialized activity centers, whereas existing bus and rail systems provide regional or corridor service. In contrast to conventional transit systems which experience peak service periods twice a day, AGT systems require a relatively high level of service and intense utilization of vehicles throughout the day. Therefore, comparisons between AGT and conventional transit are presented simply to indicate an overall contrast between the various modes.

On the basis of O&M cost per vehicle mile traveled, AGT systems compare very favorably to other conventional transit modes. O&M costs per vehicle mile traveled for both AGT and conventional transit have risen over the last

six years with conventional transit costs being double that of AGT costs. Several factors may lead to these differences. The marketing and advertising activity that is an essential part of urban public transportation requires larger administrative staffs with associated increases in G&A expenses. The wage rates for personnel needed to operate the vehicles, rising fuel prices, and varying operating conditions (e.g., frequency of stops) at each system will also impact this cost measure.

When compared on an equivalent place mile basis, AGT and conventional transit O&M costs are relatively equal. This has not always been the case. Prior to the expansion of the Morgantown system in 1979, adjusted O&M costs were disproportionately high. Now it appears that average costs for the two transportation modes will be within the same range.

Over the last six years, the O&M costs per passenger for conventional transit has dropped slightly in terms of 1981 dollars; however, in terms of actual dollars the cost has risen by 40 percent. Since data on passengers carried for AGT systems are available for only the last three years, no significant trends can be discerned. However, 1981 results were affected by an air traffic controller's strike which drastically reduced air travel and thereby impacted the ridership on the airport-based AGT systems. Large O&M cost differences per passenger carried (\$ 1.05 for conventional transit and \$ 0.33 for AGT) may be due to significant differences in service levels. That is, trip length per passenger on AGT systems is considerably shorter than the length of a trip on conventional transit.

APPENDIX A

CHARACTERISTICS OF FIFTEEN DOMESTIC AGT SYSTEMS

A-1∦R-2

TABLE A-1. GENERAL AGT SYSTEM CHARACTERISTICS

CVCTCM	CU001 1 50	SITE	INITIAL OPERATION	PERIOD OF OPEN	RATION	SYSTEM
	SUPPLIER				DATS/ TK	
AIRTRANS	VOUGHT	AIRPORT	1/74	24 HRS/UAY	365	SINGLE-LANE MULTI-LOOPS
ATLANTA	WESTINGHOUSE	AIRPORT	9/80	21 HRS/DAY	365	DUAL-LANE SHUTTLE WITH BYPASS
BUSCH GARDENS	WESTINGHOUSE	RECREATION CENTER	5/75	11 HRS/DAY	140	SINGLE-LANE LOOP
DISNEYWORLD	WED TRANS. SYSTEM, INC.	RECREATION CENTER	7/75	13 HRS/DAY	365	SINGLE-LANE LOOP
DUKE	OTIS/TTD	MEDICAL CENTER	5/80	24 HRS/DAY	365	DUAL-LANE AND SINGLE-LANE SHUTTLE
FAIRLANE	FORD	SHOPPING CENTER	3/76	77 HRS/WK	` 365	SINGLE-LANE SHUTTLE WITH BYPASS
HOUSTON	WED TRANS. SYSTEM, INC.*	AIRPORT	8/81	24 HRS/DAY	365	SINGLE-LANE LOOP
KING'S DOMINION	UNIVERSAL MOBILITY	RECREATION CENTER	4/75	11 HRS/DAY	143	SINGLE-LANE LOOP
MIAMI	WESTINGHOUSE	AIRPORT	4/80	24 HRS/DAY	365	DUAL-LANE SHUTTLE
MINNESOTA ZOO	UNIVERSAL MOBILITY	RECREATION CENTER	8/79	10 HRS/DAY	365	SINGLE-LANE LOOP
MORGANTOWN	BOEING	UNIVERSITY	9/75	76 HRS/WK	341	DUAL-LANE WITH OFF-LINE STATIONS
ORLANDO .	WESTINGHOUSE	AIRPORT	9/81	24 HRS/DAY	365	2 DUAL-LANE SHUTTLES
PEARLRIDGE	ROHR	SHOPPING CENTER	11/77	69 HRS/WK	365	SINGLE-LANE SHUTTLE
SEA-TAC	WESTINGHOUSE	AIRPORT	2/73	20-24 HRS/DAY	365	2 SINGLE-LANE LOOPS WITH SHUTTLE CONNECTION
ТАМРА	WESTINGHOUSE	AIRPORT	4/71	18-24 HRS/DAY	365	4 DUAL-LANE SHUTTLES

* SUPPLIERS OF PREVIOUS SYSTEMS AT HOUSTON WERE BARRETT AND WABCO AGT (ROHR).

A-3

SYSTEM	GUIDEWAY LENGTH E (MI.)	GUIDEWAY ELEVATION (%) LEVATED/AT-GRADE/ UNDERGROUND	GUIDEWAY CROSS- SECTION SHAPE	GU I DEWAY POWER	GUIDEWAY SWITCHES #/TYPE	GUIDEWAY GRADE (MAX. %)	ALL-WEATHER PROVISIONS
AIRTRANS	12.8/0	20/80/0	U-SHAPE	480 VAC, 60Hz	71/MBE	8	GUIDEWAY ICE REMOVAL VEHICLE
ATLANTA	1.89/0.20	0/0/100	BOX-BEAM	600 VAC, 60Hz	13/HPG	LEVEL	NONE (UNDERGROUND)
BUSCH GARDENS	1.33/0	40/60/0	I-BEAM	600 VAC, 60Hz	NONE/TT	10	NONE
DISNEYWORLD	0.87/0	100/0/0	V-SHAPE	240 VAC, 60Hz	2/RT	LEVEL	NONE
DUKE	0.11/0.23	20/45/35	U-SHAPE	480 VAC, 60Hz	2/LDM	4	NONE
FAIRLANE	0.38/0.11	100/0/0	U-SHAPE	480 VAC, 60Hz	2/SWA	2.5	ELECTRIC HEATING CABLES
HOUSTON	1.48/0	0/0/100	RAIL	240 VAC, 60Hz	NONE.	LEVEL	NONE (UNDERGROUND)
KING'S DOMINION	2.06/0	5/95/0	BOX-BEAM	440 VAC, 60Hz	1/HSS	8	NONE
MIAMI	0/0.26	100/0/0	I-BEAM	480 VAC, 60Hz	NONE	4	NONE
MINNESOTA ZOO	1.36/0	90/10/0	BOX-BEAM	440 VAC, 60Hz	1/HSS	3	ELECTRIC HEATED RAILS
MORGANTOWN	0/4.30	60/40/0	U-SHAPE	575 VAC, 60Hz	57/0BS	10	HEATED PIPES
ORLANDO	0/0.74	100/0/0	I-BEAM	600 VAC, 60Hz	NONE	1	NONE
PEARLR IDGE	0.23/0	90/10/0	BOX-BEAM	480 VAC, 60Hz	NONE	4.5	NONE
SEA-TAC	1.71/0	0/0/100	BOX-BEAM	600 VAC, 60Hz	NUNE/TT	4.5	NONE (UNDERGROUND)
TAMPA	0/0.68	100/0/0	I-BEAM	480 VAC, 60Hz	NONE	0	NONE

TABLE A-2. AGT GUIDEWAY CHARACTERISTICS

SWITCHES:

HPG - HYDRAULIC PIVOTING GUIDEBEAMS

MSS - MANUAL SEGMENT SUBSTITUTION

HSS - HYDRAULIC SEGMENT SUBSTITUTION

LDM - LATERAL DOCKING MECHANISM

MBE - MOVABLE BLADE AND ENTRAPPING RAIL

SWA - SWITCH WHEEL TO GUIDE RAIL ARM

RT - RAILWAY-TYPE

OBS - ON-BOARD SWITCHING

TT - TRANSFER TABLE FOR VEHICLE MOVEMENT
TABLE A-3. AGT GUIDEWAY PARAMETERS

the second s	And the second se	the second s				
GUIDEWAY PARAMETERS SYSTEM	PRIMARY MATERIAL(S)	CONSTRUCTION TECHNIQUE	COLUMN TYPE	LOADED VEHICLE WEIGHT(1) (LBS)	TYPICAL SPAN LENGTH (FT)	BEAM SHAPE
AIRTRANS	CONCRETE	PLANT PRECAST & PRESTRESSED FIELD POST-TENSIONED	TAPERED, RECTANGULAR PRECAST CONCRETE	20,000	90	
ATLANTA	CONCRETE	RECTANGULAR CAST-IN-PLACE CONCRETE RUNNING SURFACES	NOT APPLICABLE 39,400 (TUNNEL)		NOT APPLICABLE (TUNNEL)	
BUSCH GARDENS	STEEL AND CONCRETE	FIELD CONSTRUCTION, COMPOSITE ACTION	RECTANGULAR CAST-IN-PLACE CONCRETE	40,001	73	
DISNEYWORLD	STEEL AND CONCRETE	CONTINUOUS CAST-IN-PLACE CONCRETE	STRUCTURAL STEEL	7,700*	50	
DUKE	CONCRETE	CAST-IN-PLACE REINF. CONCRETE & PRECAST. PRE- STRESSED CONCRETE	CAST-IN-PLACE REINF. CONCRETE	13,940	56	, <u>- 10</u> ,, ,,
FAIRLANE	CONCRETE	PLANT PRECAST & PRESTRESSED FIELD POST-TENSIONED	TAPERED, RECTANGULAR W/ ROUNDED CORNERS. PRECAST CONCRETE	16,100	50	6
HOUSTON	STEEL AND Concrete	PREFABRICATED STEEL Tubes, welded end To end. Anchored To concrete	NOT APPLICABLE (TUNNEL)	17,000*	24 TUBE SECTIONS	
KING'S DOMINION	STEEL	PREFABRICATED OFF-SITE, FIELD WELDED	STRUCTURAL STEEL	33,100 *	27-60	ר <u>י</u> ן דד
MIAMI	STEEL AND CONCRETE	FIELD CONSTRUCTION, COMPOSITE ACTION	TEE-HEAD CAST-IN-PLACE CONCRETE	26,049	50-110	
MINNESOTA ZOO	STEEL	PREFABRICATED OFF-SITE, FIELD WELDED	STRUCTURAL STEEL W SHAPE	61,880*	73	۲ ۲
MORGANTOWN(2)	STEEL AND CONCRETE	FIELD CONSTRUCTION, COMPOSITE ACTION	WINE-GLASS SHAPE, CAST-IN-PLACE CONCRETE	11,728	66	
ORLANDO	STEEL AND CONCRETE	FIELD CONSTRUCTION, COMPOSITE ACTION	INFORMATION NOT AVAILABLE	40,560	INFORMATIION NOT AVAILABLE	TT
PEARLRIDGE	STEEL AND Concrete	PREFABRICATED STEEL BEAM. STEEL COLUMNS & PRECAST CONCRETE COLUMNS	TAPERED, RECTANGULAR PRECAST CONCRETE STEEL TUBULAR	28,416*	50-128	
SEA-TAC	CONCRETE	RECTANGULAR CAST-IN-PLACE CONCRETE RUNNING SURFACES	NOT APPLICABLE (TUNNEL)	40,300	NOT APPLICABLE (TUNNEL)	
TAMPA	STEEL AND CONCRETE	FIELD CONSTRUCTION, COMPOSITE ACTION	TEE-HEAD CAST-IN-PLACE CONCRETE	36,500	58	

(1) LOADED VEHICLE WEIGHT = EMPTY VEHICLE WEIGHT + 150 LBS x (ACTUAL VEHCILE CAPACITY)
(2) MORGANTOWN DATA IS FROM PHASE I TRAIN WEIGHT

TABLE A-4. AGT STATION CHARACTERISTICS

SYSTEM	NUMBER OF NUMBER OF STATIONS STATIONS ON-LINE/ ELEVATED/AT-GRADE/ OFF-LINE UNDERGROUND		TYPE OF CONSTRUCTION	FARE COLLECTION	ELEVATORS/ Escalators	PLATFORM CONFIGURATION		
AIRTRANS(1)	4/10	1/13/0	5 FREESTANDING 9 CONTIGUOUS	YES	YES/YES	SINGLE-SIDE PLATFORM		
ATLANTA	10/0	0/0/10	JOINT USE	NO	YES/YES	SINGLE-SIDE PLATFORM		
BUSCH GARDENS	2/0	2/0/0	1 JOINT USE 1 FREESTANDING	NO	YES/NO	DUAL-SIDE PLATFORMS		
D I SNE YWORLD	1/0	1/0/0	FREESTANDING	YES	NO/YES	SINGLE-SIDE PLATFORM		
DUKE(2)	2/1	0/2/1	1 CONTIGUOUS 2 JOINT USE	NO	YES/NO	SINGLE-SIDE PLATFORM		
FAIRLANE	2/0	2/0/0	1 JOINT USE 1 CONTIGUOUS	NO	NO/YES	1 DUAL-SIDE PLATFORM 1 SINGLE-SIDE PLATFORM		
HOUSTON(3)	.9/0	0/0/9	JOINT USE	NO	YES/YES	SINGLE-SIDE PLATFORM		
KING'S DOMINION	1/0	0/1/0	FREESTANDING	YES	NO/NO	DUAL-SIDE PLATFORM		
MIAMI	2/0	0/2/0	JOINT USE	NO	NO/NO	ISLAND AND SIDE PLATFORMS		
MINNESOTA ZOO	1/0	1/0/0	CUNTIGUOUS	YES	NO/NO	SINGLE-SIDE PLATFORM		
MORGANTOWN	0/5	2/3/0	FREESTANDING	YES	YES/NO	ISLAND AND SINGLE-SIDE PLATFORMS		
ORLANDO	8/0	8/0/0	JOINT USE	NO	NO/NO	ISLAND PLATFORM		
PEARLRIDGE	2/0	1/1/0	CONTIGUOUS	YES	NO/YES	SINGLE-SIDE PLATFORM		
SEA-TAC	8/0	0/0/8	JOINT USE	NO	YES/YES	SINGLE-SIDE PLATFORM		
ТАМРА	8/0	8/0/0	JOINT USE	NO	NO/NO	ISLAND AND SIDE PLATFORMS		

(1) UNLY AIRLINE PASSENGER STATIONS SHOWN; AIRTRANS HAS A TOTAL OF 53 STATIONS (INCLUDING 25 UTILITY, 14 EMPLOYEES).

(1) DUKE ALSO HAS TWO NON-PASSENGER STATIONS.
(2) DUKE ALSO HAS ONE INACTIVE STATION.

.

.

TABLE A-5. AGT FLEET CHARACTERISTICS

SYSTEM	FLEET SIZE	SINGLE VEHICLE DIMENSIONS (FT) LENGTH/WIDTH/HEIGHT	VEHICLE WEIGHT (LBS) EMPTY/GROSS	VEHICLE CAPACITY SEATED/ STANDING	VEHICLE SPEED (MPH) MAXIMUM/AVERAGE (INCLUDES DWELL TIME)	E L VEHICLE SUSPENSION	VEHICLE STEERING	VEHICLE PROPULSION	VEHICLE CONTROL
AIRTRANS(1)	51	21.0/7.0/10.0	14,000/20,700	16/24	17/10	RTOC, SPDR	SGW	DCTM	PF, FB
ATLANTA(2)	17	39.0/9.3/11.0	27,500/12,100	16/24	-27/13	RTOC, SPDR	FGB	DCTM	PF, FB
BUSCH GARDENS	2	36.3/9.8/11.0	26,500/43,800	8/88	30/11	RTOC, SPDR	CGB	DCTM	PF, FB
DISNEYWORLD	30 (5 CAR TRAIN)	8.0/4.8/3.8	4,800/7,800	20/0	14/5	SWOS, SPDR	SGW	SLIM	VF, FB
DUKE	4	20.0/10.8/9.8	10,200/16.500	4/18	28/14	AC	SGW	SLIM	PF, FB
FAIRLANE	2	24.7/6.7/8.7	12,500/17,000	10/14	30/10	RTOC, SPDR	SGW	DCTM	PF, FB
HOUSTON	6 (3 CAR TRAIN)	12.0/5.8/8.0	N/A	18/18	15/6	SWOS, SPDR	SGW	SLIM	VF, FB
KING'S DOMINIC	ON 6 (9 CAR TRAIN)	14.0/6.0/7.4	18,700/31,500	96/0	18/6	RTOS, SPMR	SG₩	DCTM	VF, FB
MIAMI	6	36.3/9.7/11.0	25,800/43,800	2/97	28/17	RTOC, SPDR	CGB	DCTM	PF, FB
MINNESOTA ZOO	3 (6 CAR TRAIN)	11.7/7.0/7.4	47,800/65,000	94/0	8/7	RTOS, SPMR	SGW	DCTM	VF, FB
MORGANTOWN	71	15.5/6.7/8.8	8,600/11,800	8/13	30/17	RTOC, SPDR	SWF	DCTM	PF, FB
ORLANDO	8	39.0/9.0/11.0	25,600/46,000	0/100	28/21	RTOC, SPDR	CGB	DCTM	PF, FB
PEARLRIDGE	1 (4 CAR TRAIN)	60.0/6.7/8.5	29,200/40,800	32/32	8/7	RTOC, SPDR	ÇGB	DCTM	PF, FB
SEA-TAC(3)	12	37.0/9.3/11.0	25,000/46, 700	12/90	26/9	RTOC, SPDR	CGB	DCTM	PF, FB
TAMPA	8	36.3/9.3/11.0	21, 500/40, 300	0/100	30/9	RTOC, SPDR	CGB	DCTM	PF, FB
VEHICLE SUSPEI AC - A DCTM - D FB - F PF - PA RTOC - RU RTOS - R SLIM - S SPDR - SU SPDR - SU SPMR - SU	NSION: IR CUSHION IRECT CURRENT TRA IXED BLOCK DINT FOLLOWER CON UBBER TIRE ON CON UBBER TIRE ON STE INGLE-SIDED LINEA UPPORTED DUAL-RAIL UPPORTED MONORAIL	STEI C CTION MOTOR S ITROL ICRETE EL R INDUCTION MOTOR L UNTROL	ERING (ALL HAVE RU GB – CENTER (GW – SIDE GU] WF – SIDE WAU SWITCH	IBBER GUIDE GUIDE BEAM LOANCE SURFA L FOLLOWER/	WHEEL): (1) (2) ICE (3) ION-BOARD N/A	AIRTRANS ALSO ATLANTA HAS P/ SEA-TAC HAS 24 Not Available	HAS 17 NON- ISSENGER VEH PASSENGER	PASSENGER VEHIC ICLES ON ORDER VEHICLES ON ORI	CLES. FOR 1983. DER FOR 1982.

•

.

SWOS - STEEL WHEEL ON STEEL

A-7/2-8

1

ł

. !

APPENDIX B

LOCATIONS AND CONTACTS FOR FIFTEEN DOMESTIC AGT SYSTEMS

Busch Gardens

Busch Gardens P.O. Drawer FC Williamsburg, VA 23185

Attention: D. Potter Title: Operations Manager Telephone: FTS 937-6011 COM 804/253-3200

Dallas-Fort Worth Airport

Dallas-Fort Worth Airport P.O. Drawer DFW Dallas-Fort Worth Airport, TX 75261

Attention: D. Leftwich Title: Director of Transportation Telephone: 214/574-6000

Duke University Medical Center

Duke University Medical Center P.O. Box 3901 Durham, NC 27710

Attention: A.E. Blaloch Title: Maintenance Engineer Telephone: 919/681-4192

Fairlane Shopping Center

Ford Aerospace & Communication Corp. 2015 Bailey Street Dearborn, MI 48121

Attention: R. Reed Title: Supervisor, ACT Systems Telephone: 313/322-6348

Hartsfield International Airport

Hartsfield International Airport Department of Aviation Atlanta, GA 30320

Attention: M.W. Walker Title: Director of Planning and Development Telephone: 404/530-6600

Houston Intercontinental Airport

WED Transportation System, Inc. P.O. Box 40 Lake Buena Vista, FL 32830

Attention: R. Weidenbeck Title: General Manager Telephone: FTS 826-2211 COM 305/824-5050

King's Dominion Amusement Park

King's Dominion Amusement Park P.O. Box 166 Doswell, VA 23219

Attention: A. Ryland Title: Rides Manager Telephone: FTS 937-6011 COM 804/876-5000

Miami International Airport

Dade County Aviation Department P.O. Box 59-2075 Miami, FL 33159

Attention: R. Kemmink Title: Construction Manager Telephone: FTS 350-5011 COM 305/526-2017

Minnesota Zoological Garden

Minnesota Zoological Garden 12101 Jonny Cake Road Apple Valley, MN 55124

Attention: S.A. Iserman Title: Administrative Officer Telephone: 612/432-9010

Orlando International Airport

Greater Orlando Aviation Authority P.O. Box 30004 Orlando, FL 32862

Attention: G. Seel Title: Director of Facilities Telephone: FTS 826-2211 COM 305/826-2016

Pearlridge Center

P.M. Hawaii, Inc. 300 Pearlridge Center 98-1005 Moanalua Road Aiea, HA 96701

Attention: W. Bricker Title: President Telephone: 808/488-1928

Seattle-Tacoma International Airport

Seattle-Tacoma International Airport P.O. Box 68727 Seattle, WA 98188

Attention: M.K. Bitts Title: Electronics Superintendent Telephone: 206/433-5407

150 copies

Tampa International Airport

Hillsborough County Aviation Authority P.O. Box 22287 Tampa, FL 33622

Attention: P.T. MacAlester Title: Director of Information Telephone: FTS 826-2211 COM 813/883-3400

Walt Disney World

WED Transportation Systems, Inc. P.O. Box 40 Lake Buena Vista, FL 32830

Attention: R. Weidenbeck Title: General Manager Telephone: FTS 826-2211 COM 305/824-5050

West Virginia University

Morgantown People Mover System 99 8th Street Morgantown, WV 26506

Attention: R. Bates Title: Director Telephone: FTS 923-1511 COM 304/293-5011